
Redes de araña
La topología en estrella es la posibilidad de fallo de red conectando todos los nodos a un nodo central. Cuando se aplica a una red basada en la topología estrella este concentrador central reenvía todas las transmisiones recibidas de cualquier nodo periférico a todos los nodos periféricos de la red, algunas veces incluso al nodo que lo envió. Todos los nodos periféricos se pueden comunicar con los demás transmitiendo o recibiendo del nodo central solamente. Un fallo en la línea de conexión de cualquier nodo con el nodo central provocaría el aislamiento de ese nodo respecto a los demás, pero el resto de sistemas permanecería intacto. El tipo de concentrador hub se utiliza en esta topología.
La desventaja radica en la carga que recae sobre el nodo central. La cantidad de tráfico que deberá soportar es grande y aumentará conforme vayamos agregando más nodos periféricos, lo que la hace poco recomendable para redes de gran tamaño. Además, un fallo en el nodo central puede dejar inoperante a toda la red. Esto último conlleva también una mayor vulnerabilidad de la red, en su conjunto, ante ataques.
Si el nodo central es pasivo, el nodo origen debe ser capaz de tolerar un eco de su transmisión. Una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Una topología en árbol (también conocida como topología jerárquica) puede ser vista como una colección de redes en estrella ordenadas en una jerarquía. Éste árbol tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores. Al contrario que en las redes en estrella, la función del nodo central se puede distribuir.
Como en las redes en estrella convencionales, los nodos individuales pueden quedar aislados de la red por un fallo puntual en la ruta de conexión del nodo. Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto.
Para aliviar la cantidad de tráfico de red que se necesita para retransmitir todo a todos los nodos, se desarrollaron nodos centrales más avanzados que permiten mantener un listado de las identidades de los diferentes sistemas conectados a la red. Éstos switches de red “aprenderían” cómo es la estructura de la red transmitiendo paquetes de datos a todos los nodos y luego observando de dónde vienen los paquetes respuesta.
Topologías más Comunes
Bus : Esta topología permite que todas las estaciones reciban la informaciónque se transmite, una estación transmite y todas las restantes escuchan. Consiste en un cable con un terminador en cada extremo del que se cuelgan todos los elementos de una red. Todos los nodos de la red están unidos a este cable: el cual recibe el nombre de "Backbone Cable". Tanto Ethernet como Local Talk pueden utilizar esta topología.
El bus es pasivo, no se produce regeneración de las señales en cada nodo. Los nodos en una red de "bus" transmiten la información y esperan que ésta no vaya a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la información.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Anillo: Las estaciones están unidas unas con otras formando un círculo por medio de un cable común. El último nodo de la cadena se conecta al primero cerrando el anillo. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo. Con esta metodología, cada nodo examina la información que es enviada a través del anillo. Si la información no está dirigida al nodo que la examina, la pasa al siguiente en el anillo. La desventaja del anillo es que si se rompe una conexión, se cae la red completa.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Estrella: Los datos en estas redes fluyen del emisor hasta el concentrador, este realiza todas las funcionesde la red, además actúa como amplificador de los datos.
La red se une en un único punto, normalmente con un panel de control centralizado, como un concentrador de cableado. Los bloques de información son dirigidos a través del panel de controlcentral hacia sus destinos. Este esquema tiene una ventaja al tener un panel de control que monitorea el tráfico y evita las colisiones y una conexión interrumpida no afecta al resto de la red.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Híbridas:El bus lineal, la estrella y el anillo se combinan algunas veces para formar combinaciones de redes híbridas.
Anillo en Estrella: Esta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo.
"Bus" en Estrella: El fin es igual a la topología anterior. En este caso la red es un "bus" que se cablea físicamente como una estrella por medio de concentradores.
Estrella Jerárquica: Esta estructurade cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada par formar una red jerárquica.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Árbol: Esta estructura se utiliza en aplicaciones de televisión por cable, sobre la cual podrían basarse las futuras estructurasde redes que alcancen los hogares. También se ha utilizado en aplicaciones de redes locales analógicas de banda ancha.
Trama: Esta estructura de red es típica de las WAN, pero también se puede utilizar en algunas aplicaciones de redes locales (LAN). Las estaciones de trabajo están conectadas cada una con todas las demás.
Mecanismos para la resolución de conflictos en la transmisión de datos:
CSMA/CD:Son redes con escucha de colisiones. Todas las estaciones son consideradas igual, es por ello que compiten por el uso del canal, cada vez que una de ellas desea transmitir debe escuchar el canal, si alguien está transmitiendo espera a que termine, caso contrario transmite y se queda escuchando posibles colisiones, en este último espera un intervalo de tiempo y reintenta de nuevo.
Token Bus:Se usa un token (una trama de datos) que pasa de estación en estación en forma cíclica, es decir forma un anillo lógico. Cuando una estación tiene el token, tiene el derecho exclusivo del bus para transmitir o recibir datos por un tiempo determinado y luego pasa el token a otra estación, previamente designada. Las otras estaciones no pueden transmitir sin el token, sólo pueden escuchar y esperar su turno. Esto soluciona el problema de colisiones que tiene el mecanismo anterior.
Token Ring: La estación se conecta al anillo por una unidad de interfaz (RIU), cada RIU es responsable de controlar el paso de los datos por ella, así como de regenerar la transmisión y pasarla a la estación siguiente. Si la dirección de la cabecera de una determinada transmisión indica que los datos son para una estación en concreto, la unidad de interfaz los copia y pasa la información a la estación de trabajo conectada a la misma.
Se usa en redes de área local con o sin prioridad, el token pasa de estación en estación en forma cíclica, inicialmente en estado desocupado. Cada estación cundo tiene el token (en este momento la estación controla el anillo), si quiere transmitir cambia su estado a ocupado, agregando los datos atrás y lo pone en la red, caso contrario pasa el token a la estación siguiente. Cuando el token pasa de nuevo por la estación que transmitió, saca los datos, lo pone en desocupado y lo regresa a la red.
DIFERENTES FORMAS DE TOPOLOGÍA Y LA LONGITUD MÁXIMA DE LOS SEGMENTOS DE CADA UNA.
TOPOLOGÍA DE RED
LONGITUD SEGMENTO MÁXIMO
Ethernet de cable fino (BUS)
185 Mts (607 pies)
Ethernet de par trenzado (Estrella/BUS)
100 Mts (607 pies)
Token Ring de par trenzado (Estrella/Anillo)
100 Mts (607 pies)
ARCNET Coaxial (Estrella)
609 Mts (2000 pies)
ARCNET Coaxial (BUS)
305 Mts (1000 pies)
ARCNET de par trenzado (Estrella)
122 Mts (400 pies)
ARCNET de par trenzado (BUS)
122 Mts (400 pies)
InterRedes: Un nuevo concepto que ha surgido de estos esquemas anteriores es el de Intercedes, que representa vincular redes como si se vincularán estaciones.
Este concepto y las ideas que de este surgen, hace brotar un nuevo tipo especial de dispositivo que es un vinculador para interconectar redes entre sí (la tecnología de Internet está basada en el concepto de InterRedes), el dispositivo en cuestión se denomina "dispositivo de interconexión". Es decir, lo que se conecta, son redes locales de trabajo.
Un enlace central es utilizado a menudo en los entornos locales, como un edificio. Los servicios públicos como las empresas de telefonía, proporcionan enlaces de área metropolitana o de gran alcance.
Las tres topologías utilizadas para estos tipos de redes son:
Red de Enlace Central: Se encuentra generalmente en los entornos de oficina o campos, en los que las redes de los pisos de un edificio se interconectan sobre cables centrales. Los Bridges y los Routers gestionan el tráfico entre segmentos de red conectados.
Red de Malla: Esta involucra o se efectúa a través de redes WAN, una red malla contiene múltiples caminos, si un camino falla o está congestionado el tráfico, un paquete puede utilizar un camino diferente hacia el destino. Los routers se utilizan para interconectar las redes separadas.
Red de Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.
Red Neuronal (Neural, Neural Networks)
Es un sistemacompuesto por un gran número de elementos básicos, agrupados en capas y que se encuentran altamente interconectados. Esta estructura posee varias entradas y salidas, las cuales serán entrenadas para reaccionar ( valores O), de una manera deseada, a los estímulos de entrada (valores I).
Estos sistemas emulan, de una cierta manera, al cerebrohumano. Requieren aprender a comportarse y alguien debe encargarse de enseñarles o entrenarles, en base a un conocimiento previo del entorno del problema.
Las redes neuronales no son más que un modelo artificial y simplificado del cerebro humano, que es el ejemplo más perfecto del que disponemos para un sistema que es capaz de adquirir conocimiento a través de la experiencia. Una red neuronal es "un nuevo sistema para el tratamiento de la información, cuya unidad básica de procesamiento está inspirada en la célula fundamental del sistema nervioso humano: la neurona".
Por lo tanto, las Redes Neuronales:
•Consisten de unidades de procesamiento que intercambian datos o información.
•Se utilizan para reconocer patrones, incluyendo imágenes, manuscritos y secuencias de tiempo, tendencias financieras.
•Tienen capacidad de aprender y mejorar su funcionamiento.
Una primera clasificación de los modelos de redes neuronales podría ser, atendiendo a su similitud con la realidad biológica:
1) El modelo de tipo biológico. Este comprende las redes que tratan de simular los sistemas neuronales biológicos, así como las funciones auditivas o algunas funciones básicas de la visión.
Se estima que el cerebro humano contiene más de cien mil millones de neuronas estudios sobre la anatomía del cerebro humano concluyen que hay más de 1000 sinápsis a la entrada y a la salida de cada neurona. Es importante notar que aunque el tiempo de conmutación de la neurona ( unos pocos milisegundos) es casi un millón de veces menor que en los actuales elementos de las computadoras, ellas tienen una conectividad miles de veces superior que las actuales supercomputadoras.
Las neuronas y las conexiones entre ellas (sinápsis) constituyen la clave para el procesado de la información.
Algunos elementos ha destacar de su estructura histológica son:
Las dendritas, que son la vía de entrada de las señales que se combinan en el cuerpo de la neurona. De alguna manera la neurona elabora una señal de salida a partir de ellas.
El axón, que es el camino de salida de la señal generada por la neurona.
Las sinapsis, que son las unidades funcionales y estructurales elementales que median entre las interacciones de las neuronas. En las terminaciones de las sinapsis se encuentran unas vesículas que contienen unas sustancias químicas llamadas neurotransmisores, que ayudan a la propagación de las señales electroquímicas de una neurona a otra.
2) El modelo dirigido a aplicación. Este modelo no tiene por qué guardar similitud con los sistemas biológicos. Su arquitectura está fuertemente ligada a las necesidades de las aplicaciones para la que es diseñada.
No hay comentarios:
Publicar un comentario